

Expressiveness, CTL Model Checking

Dr. Liam O'Connor CSE, UNSW (for now) Term 1 2020

1

Comparing Logics

Formula Equivalence

Two formulae are equivalent iff they admit the same models.

$$\frac{\forall A. \ (A \models P) \Leftrightarrow (A \models Q)}{P \equiv Q}$$

Logic Expressiveness

A logic L_1 is *more expressive* than a logic L_2 , written $L_2 \subseteq L_1$, iff: For all $\varphi_2 \in L_2$, there is a $\varphi_1 \in L_1$ such that $\varphi_1 \equiv \varphi_2$.

$$\mathsf{CTL} \subseteq \mathsf{CTL}^*$$
? $\mathsf{LTL} \subseteq \mathsf{CTL}^*$? $\mathsf{LTL} \subseteq \mathsf{CTL}$? $\mathsf{CTL} \subseteq \mathsf{LTL}$?

$LTL \subseteq CTL^*$

LTL formulae look like CTL* path formulae. How do we convert them into equivalent state formulae?

Recall that
$$A \models \varphi$$
 iff $\forall \rho \in \mathsf{Traces}(A)$. $\rho \models \varphi$

For all LTL formulae φ :

$$A \models_{\mathsf{LTL}} \varphi \Longleftrightarrow A \models_{\mathsf{CTL}^*} \mathbf{A} \varphi$$

Proof follows trivially from the definition of **A**.

 $CTL \subseteq LTL$?

CTL Formula: AF AG •

LTL Formula: **FG** ●? does this work?

4

CTL ⊈ LTL

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , $B \models \varphi \implies A \models \varphi$

Suppose \exists an LTL formula φ that is equivalent to **AG EF** •.

Proof

Observe that $B \models \mathbf{AG} \ \mathbf{EF} \bullet$ but $A \not\models \mathbf{AG} \ \mathbf{EF} \bullet$ Because φ is equivalent, we know

 $B \models \varphi \text{ and } A \not\models \varphi.$ But as Traces(A) \subseteq Traces(B)

But, as $Traces(A) \subseteq Traces(B)$, our lemma says that $A \models \varphi$.

Contradiction!

$LTL \subseteq CTL$?

LTL Formula: $\mathbf{F} (\bullet \wedge \mathbf{X} \bullet)$

CTL Formula: **AF** (● ∧ **AX** ●). Does this work?

Nope!

LTL ⊈ CTL

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any i.
- They cannot be distinguished by CTL formulae of length $\leq i$. That is, $\forall i$. $\forall \varphi$. $|\varphi| \leq i \Rightarrow (A_i \models \varphi \Leftrightarrow B_i \models \varphi)$

See the textbook (Baier and Katoen) for details.

Proof

Let φ be a CTL formula equivalent to $\mathbf{F} \ \mathbf{G} \ \bullet$.Let k be the length of φ , i.e. $k = |\varphi|$. From lemma, $A_k \models \mathbf{F} \ \mathbf{G} \ \bullet$ and $B_k \not\models \mathbf{F} \ \mathbf{G} \ \bullet$, but also $A_k \models \varphi \Leftrightarrow B_k \models \varphi$, so φ cannot be equivalent.

Contradiction!

$\mathsf{CTL} \subset \mathsf{CTL}^*$

Every CTL formula is also a CTL* formula. But is it a strict inclusion (i.e. $CTL \subset CTL^*$)?

Yes. We know already that LTL \subseteq CTL* and that LTL $\not\subseteq$ CTL. So pick any LTL formula that cannot be expressed in CTL, and we have a formula that cannot be expressed in CTL but can be in CTL*.

$\mathsf{LTL} \subset \mathsf{CTL}^*$

We saw that LTL \subseteq CTL*. But is it a strict inclusion? (i.e. LTL \subset CTL*)?

Yes. We know already that $CTL \subseteq CTL^*$ and that $CTL \not\subseteq LTL$. So pick any CTL formula that cannot be expressed in LTL, and we have a formula that cannot be expressed in LTL but can be in CTL^* .

$(LTL \cup CTL) \subset CTL^*$

Is there any formula that **can** be expressed in CTL* but not in CTL nor in LTL?

Strict Inclusion

Yes. The proof is very involved, but the formula **E G F** ● cannot be expressed in either LTL nor CTL.

The CTL Model Checking Problem

Given

- A CTL formula φ , and
- An automaton A,

Determine if $A \models \varphi$.

Our approach

We first break the formula up into a *parse tree*. Then, annotate states in a bottom-up fashion with the (sub-)formulae they satisfy.

Parse Trees

A(p **UNTIL E**(True **UNTIL** $q \wedge r$))

Formal Algorithm: Basic Propositions

```
case \varphi \in \mathcal{P} do
                                             /* Atomic proposition */
    foreach q \in Q do
        if \varphi \in L(q) then
        q.\varphi := \mathsf{True};
         q.\varphi := \mathsf{False};
case \varphi = \neg \psi do
                                                              /* Negation */
    Mark(A, \psi);
    foreach q \in Q do q.\varphi := \neg q.\psi;
case \varphi = \psi_1 \wedge \psi_2 do
                                                         /* Conjunction */
    Mark(A, \psi_1); Mark(A, \psi_2);
    foreach q \in Q do
      q.\varphi := q.\psi_1 \wedge q.\psi_2 ;
```

Formal Algorithm: EX

We can simplify **AX** ψ to \neg **EX** $\neg \psi$. Why?

```
case \varphi = \mathbf{E} \ \psi_1 \ \mathbf{UNTIL} \ \psi_2 \ \mathbf{do}
                                                       /* Exist Until */
    Mark(A, \psi_1); Mark(A, \psi_2);
    foreach q \in Q do
         q.\varphi := \mathsf{False}:
         q.visited := False;
         if q.\psi_2 then
             q.\varphi := \mathsf{True} ;
             q.visited := True :
             W := W \cup \{q\};
    while W \neq \emptyset do
         q := pop(W); /* q satisfies \varphi */
         foreach (q', q) \in \delta do
              if \neg q'. visited then
                  q'.visited := True ;
                  if q'.\psi_1 then
                q'.\varphi := \mathsf{True}; \ W := W \cup \{g'\};
```

```
case \varphi = A \psi_1 UNTIL \psi_2 do
                                                  /* For All Until */
    Mark(A, \psi_1); Mark(A, \psi_2);
    foreach q \in Q do
         q.\varphi := \mathsf{False}:
         q.nbUnchecked := |\delta(q)|;
         if q.\psi_2 then
         q.\varphi := \mathsf{True} ;
          W := W \cup \{q\};
    while W \neq \emptyset do
         q := pop(W);
         /* q satisfies \varphi */
         foreach (q',q) \in \delta do
              q'.nbUnchecked := q'.nbUnchecked - 1;
             if (g'.nbUnchecked = 0 \land g'.\psi_1 \land \neg g'.\varphi) then
            q'. \varphi := \mathsf{True} \; ; \ W := W \cup \{q'\};
```

Complexity?

Assume a fixed size of formula $|\varphi|$, what is the run time complexity of this algorithm?

- Complexity for atomic propositions, \wedge and \neg : $\mathcal{O}(|Q|)$
- Complexity for **EX**: $\mathcal{O}(|Q|)$
- Complexity for $\mathbf{E}(\cdot \mathbf{UNTIL} \cdot)$: $\mathcal{O}(|Q| + |\delta|)$
- Complexity for $A(\cdot UNTIL \cdot)$: $\mathcal{O}(|Q| + |\delta|)$

Therefore, overall complexity is: $\mathcal{O}((|Q| + |\delta|) \times |\varphi|)$

Example

Procedure

- Simplify to basic CTL operations.
- Build parse tree for new formula.
- Mark states bottom up as described.

Example

- EF (• ∧ •)
- EF AG (• ∧ •)

Bibliography

Expressiveness:

- Huth/Ryan: Logic in Computer Science, Section 3.5
- Baier/Katoen: Principles of Model Checking, Section 6.3

CTL Model Checking

- Bérard et al: System and Software Verification, Section 3.1
- Baier/Katoen: Principles of Model Checking, Section 6.4
- Clarke et al: Model Checking, Section 4.1
- Huth/Ryan: Logic in Computer Science, Section 3.6