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Comparing Logics

Formula Equivalence
Two formulae are equivalent iff they admit the same models.

VA.(AEP)& (A= Q)
P=Q

Logic Expressiveness

A logic Ly is more expressive than a logic Ly, written Ly C Ly, iff:
For all o5 € Ly, there is a 1 € L1 such that v1 = vo.

CTLC CTL*? LTL C CTL*? LTLC CTL? CTL CLTL?
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LTL C CTL*

LTL formulae look like CTL* path formulae. How do we convert
them into equivalent state formulae?

Recall that A |= ¢ iff Vp € Traces(A). p = ¢
For all LTL formulae ¢:

AETLy <= AFEcti- A v

Proof follows trivially from the definition of A.
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CTL C LTL?
CTL Formula: AF AG

LTL Formula: FG @7 does this work?

It’s not equivalent!
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CTL ¢ LTL

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) C Traces(B) then for any LTL formula ¢,
By = Ak

Suppose 3 an LTL formula ¢ that is equivalent to AG EF ©.

r \ Proof

Observe that B = AG EF @ but
A}~ AG EF ®

@ e Because ¢ is equivalent, we know
B = ¢ and A}~ .

B But, as Traces(A) C Traces(B), our
lemma says that A |= ¢.
Contradiction!
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LTL C CTL?

LTL Formula: F (® A X @)
CTL Formula: AF (® A AX ®). Does this work?

@@

Nope!
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LTL ¢ CTL

Lemma

It is possible to construct two families of automata A; and B; such
that:

@ They are distinguished by the LTL formula F G @, that is:
Ai=F G ® but B; ~F G ® for any i.

@ They cannot be distinguished by CTL formulae of length < /.
That is, Vi. V. || <i= (AiE ¢ < Bi = ¢)
See the textbook (Baier and Katoen) for details.

Proof

Let ¢ be a CTL formula equivalent to F G @ .Let k be the length
of , i.e. k =|p|. From lemma, Ax =F G ® and B, [~ F G
but also Ax = ¢ < By = ¢, so ¢ cannot be equivalent.
Contradiction!
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CTL C CTL*

Every CTL formula is also a CTL* formula. But is it a strict
inclusion (i.e. CTL C CTL*)?

Yes. We know already that LTL C CTL* and that LTL ¢ CTL. So
pick any LTL formula that cannot be expressed in CTL, and we
have a formula that cannot be expressed in CTL but can be in
CTL*.
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LTL C CTL*

We saw that LTL € CTL*. But is it a strict inclusion?

(i.e. LTL C CTL*")?

Yes. We know already that CTL C CTL* and that CTL & LTL.
So pick any CTL formula that cannot be expressed in LTL, and we

have a formula that cannot be expressed in LTL but can be in
CTL*.
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(LTL U CTL) C CTL"

Is there any formula that can be expressed in CTL* but not in
CTL nor in LTL?

Strict Inclusion
Yes. The proof is very involved, but the formula E G F @ cannot
be expressed in either LTL nor CTL.
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The CTL Model Checking Problem

Given
o A CTL formula ¢, and
@ An automaton A,
Determine if A = .

Our approach

We first break the formula up into a parse tree. Then, annotate
states in a bottom-up fashion with the (sub-)formulae they satisfy.
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Parse Trees

A(p UNTIL E(True UNTIL g A r))



Formal Algorithm
case ¢ € P do
foreach g € Q do
if o € L(q) then

q.p := True;
else
L q.p := False;
case ¢ = ) do
Mark(A, 1) ;
foreach g € Q do
| g0 :=-q1;

0

ase © = 11 A 1> do
Mark(A, 11); Mark(A,2) ;
foreach g € Q do

| qo=qi1Aqgin;
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: Basic Propositions

/* Atomic proposition */

/* Negation */

/* Conjunction */
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Formal Algorithm: EX

case o = EX ¢ do /* Exists a Successor */
Mark(A, ) ;
foreach g € Q do
L q.p = False;
foreach (q,q’) € 0 do
if ¢’.7) then
L L q.p = True ;

We can simplify AX 1) to =EX —1. Why?
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case o = E 1)1 UNTIL ¢, do /* Exist Until */
Mark(A, 1) ; Mark(A,2) ;

foreach g € Q do

q.p := False;

qg.visited := False;

if g.1» then

q.p := True;
qg.visited := True ;
W:=Wu{q};

while W # @ do
q := pop(W); /x q satisfies ¢ */
foreach (¢, q) € 0 do
if —q'.visited then
q'.visited := True ;
if ¢’.7/1 then
L q .= True; W:= WU{q'};
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case o = A 1); UNTIL ¢» do /* For All Until =/
Mark(A, 1) ; Mark(A, 12);
foreach g € Q do
q.p := False;
q.nbUnchecked := |5(q)|;
if g.1» then
q.p := True;
L W = Wu{q};

while W # & do
q := pop(W);
/* q satisfies @ */
foreach (¢, q) € 0 do
q'.nbUnchecked := q'.nbUnchecked — 1 ;
if (¢'.nbUnchecked =0 A ¢’ .41 A —q'.p) then
q .o := True ;
L W:=Wu{q'};
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Complexity?

Assume a fixed size of formula |¢|, what is the run time complexity
of this algorithm?

e Complexity for atomic propositions, A and —: O(|Q|)
e Complexity for EX: O(|Q])

e Complexity for E(- UNTIL -): O(|Q] + [d])

e Complexity for A(- UNTIL -): O(|Q] + [d])

Therefore, overall complexity is: O( (|Q| + [4]) x || )
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Procedure
o Simplify to basic
CTL operations.

@ Build parse tree for
new formula.

@ Mark states
bottom up as
described.

Example
@ EF (e N 0)
@ EF AG (o N o)
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